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Interiors with relativistic dust flow 
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Raman Research Institute, Bangalore-560 006, India 

Received 24 May 1978, in final form 31 July 1978 

Abstract. New dust interiors admitting three Killing vectors are derived and matched to 
vacuum exteriors, and some of their properties are investigated. 

1. Introduction 

This paper is a continuation of earlier studies by Hansen and Winicour (1975), 
Winicour (1973,  Vishveshwara and Winicour (1977) and Hoenselaers and Vishvesh- 
wara (1978) on interior solutions admitting an Abelian orthogonally transitive timelike 
G2. 

In the previous work the quantity ,4201 - A I ~ A ~ o =  2 ~ *  was always assumed to be 
variable and was used as a harmonic coordinate in the case of dust solutions, as it 
satisfied a two-dimensional Laplace equation. However, here we shall take T as a 
constant. 

The relevant field equations and the notation to which we shall adhere throughout 
were derived in the papers cited above; in particular we shall refer to the last two of 
them as I and I1 respectively. 

2. The solution 

First it may be observed that nothing prevents us from assuming (without loss of 
generality) 

7 = 1  (2.1) 

in the equations derived in 11. On the other hand equation (I1 2.9) 

DaD,7 = 16.rr~p 

implies 

p = o  (2.2) 
and we are thus dealing with matter consisting of dust. The other equations can be 
combined to yield 

+ Present address: Physics Department, Montana State University, Bozeman, Montana 59717. USA 

(2.3) 
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(2.4) 

Now one has to select a state function relating $ and q. Obviously the easiest choice is 
to take one of them to be constant. Furthermore we assume all quantities to depend 
only on one of the coordinates. 

For q = const the solution of (2.3) would be $ = -e"", but from equation (2.7) below 
it can be shown that A would be strictly negative. We thus discard this case and assume 

+ = const. (2.5) 

This gives 
q = a x  

p e'' = (1/4.rr)a2 

Cl = const 

and the A, to be calculated from (I1 2.17) 

Aoi=(f l /4)( t -q2)+q 

A i l =  (1/fl)(q - A o i )  

A oo = (I, - flO o i  + ) 

read 
2 2  Aol=(n /J l ) ( i -a  x ) + a x  

,411 = ( l /*)(a2x2 -$) 

Aoo=*{[1 - ( ~ f l / ~ ) ~ ] ~ - n ~ / 2 $ ~ } .  

The remaining equation for e*' is (I1 2.3). 

R = -e-2'(&$ +&$) = $D"AaDmA, +  ST^. 
It surprisingly turns out, as A ;A O L '  = -2a2 (' = a x ) ,  that R = 0 and hence 

4 = cx + d .  

(2.7) 

(2.9) 

(2.10) 

3. The exterior solution and matching 

The equations and a convenient method of deriving the exterior solution, which apply 
also in the case T = 1, have been given in I. Here we just list the results. 

b 2 # 0  - bx A,=A,ebx+B,e , 
( 3 . 1 ~ )  

A,A" = B,B" 5 A,B" + $ = o 
A x  = A,x + B,, 

A,A" = A,B" = B,B" + 1 = 0. 

6 = O  

In the case b 2 < 0  in ( 3 . 1 ~ )  the solution for real A, is 

A, = A, sin(bx) + B, cos(bx) 

A,A" =B,B" 5 -1, A,B" = 0. 

(3.16) 

( 3 . 1 ~ )  



Interiors with relativistic dust flow 211 

In all three cases q5 is given by 

where the r signs stand for the cases ( 3 . 1 ~ )  and (3 .1~)  respectively. 
The homogeneous part of 4 as a solution of (2.9) has an intimate connection with 

the orbits of the third, i.e. ay, Killing vector present in our solution. It also has 
consequences for the matching. We shall discuss this later. 

For matching the interior solution derived in § 2 to the exterior one solves 

i e  A;, =A:,, A:, =A, ,  

where i and e stand for the interior and exterior respectively. The subscript 0 indicates 
that the value is to be taken at the boundary x = x o .  

Calculations using ( 3 . 1 ~ )  give 

b 2  = 2a2 

A, = ( l /b)(bAcl  sin(bx)+A& cos(bx))o 

B, = (l/b)(bAcl cos(bx)-A& sin(bx))o. 
(3.3) 

For the matching of 4 one has to distinguish between two cases, depending on whether 
the homogeneous parts of (2.10) and (3.2) are included or not. 

Case I:  c = 1 ,  d = 0. Matching of q5 and 4‘ gives 
2 xo = a2xg/2 + axo+p,  l = a  x o + a  

or 

p = a2xi /2 .  2 a = l - a  xo, 

Case 11: c = d = a = 0. The matching conditions are now 
2 o=a2x ; /2+p ,  O=a xo 

(3.4) 

which shows that a continuous first derivative is only possible for xo = 0. Otherwise we 
have to accept a ‘kink’ in 4 which leads to a surface stress-energy tensor. In any case 

(3.5) 
2 2  p = - a  xo/2. 

4. Discussion 

As has been mentioned before, the homogeneous part of the solution of (2.9) is 
connected with the structure of the orbits of the a, Killing vector. Consider case I: the 
norm of the ay Killing vector is eZx. Identifying the points y and y = 277 one sees that the 
Killing vector has closed orbits and the axis is approached as x + --CO. On the other 
hand, in case I1 the norm is 1 and hence the Killing vector is a translation. 

However, in neither case can we use our interior solution for all x. From (2.8) it is 
obvious that various pathologies appear if x does not satisfy 

x E ( -1 / JZa ,  1 / J Z a )  

x~ ( - I /  JZa + +/an, 1/J2a + +/an) 
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which means that x is bounded by 

-1/&a < x < -I/& ++/an, 
1/JZa+(L/an<x<1/JZa, - JZ /a  <+/aR<o (4.1) 

-1/JZa < x  < 1/JZa, 

0 < (La R < & / a  

I(L/aRI > JZ/a.  

While the matching can always be done in case I, case 11 presents the problem that a 
continuous first derivative of q5 can be obtained only at x o  = 0. Let XI denote the other 
matching surface. The calculation of the surface stress-energy tensor according to well 
known methods (cf. 11) yields as non-vanishing components 

S :  = S :  = (1/8.rr)a2x1 exp(a2x3. (4.2) 

The four-velocity of the matter constituting the surface, i.e. the timelike eigenvector of 
Sf, is not uniquely determined; however, the density and the mean pressure are given 
by 

(4.3) 

from which one concludes that x1 has to be less than zero. Of course, this gives 
conditions on a, (L and s1 according to (4.1). 

The total mass and momentum can be calculated from the Komar integrals as given 
by Hansen and Winicour. One finds 

3 = - p s  = --s3 

For the two matching surfaces x o  and x1 within the limits imposed by (4.1) one can show 
that m is positive. There is, however, the surprising result that, for XI = - x o ,  j becomes 
zero. To analyse this behaviour we consider the trajectory of the locally non-rotating 
observer 

l" = G - ( A o i / A i i ) G ,  ld" =-2/A11 (4.5) 

and the part of the four-velocity orthogonal to it  

l uDL = u P h ;  = ( l / J q ) ( S {  +ng/1)[8; +(A,1/2)&lQ]. 

One finds 

I U a = (1 /J--l(LA 1 i)G (A 01  + 1 1 )  = (1 1 i)tYax. (4.6) 

The interpretation is that the flow of matter changes direction at x = 0. Thus the above 
result becomes understandable. 

The total space-time consists of three regions in each of which the metric reads 

ds2=e2'(dx2+dy2)+A11 dz2+2A01 dz d t+AI1  dt2. 

The region in which the dust is present, and for which q5 and the A's are given by (2.10) 
and (2.8) respectively, has on each side a vacuum region whose (b and A's can be found 
in (3.2) and (3 .1~) .  The various constants appearing in those expressions are related by 
the matching conditions (3.3) and (3.4) respectively and (3.5). 

To summarise, the model of case I has to be interpreted as a hollow cylinder in which 
matter flows up and/or down. Mass and momentum per unit height are given by (4.4). 
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Case I1 is an infinite slab in which matter flows in one direction over a surface whose 
pressure and density are given by (4.3). To find the mass and momentum per unit area 
one has to divide the expressions (4.4) by 27r. 
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